Calculus A for Economics

Exercise Number 5

1) Use the definition of a continuous function at a point x_{0}, to prove that the following functions are continuous at the specified point x_{0} :
a) $f(x)=(x-3)^{2}-x+2 \quad x_{0}=2$
b) $f(x)=\frac{x-2}{2 x+3} \quad x_{0}=-1$
2) Determine if the following functions are continuous at the point $x=2$:
a) $f(x)=\sqrt{(x-2)^{3}+5}$
b) $f(x)= \begin{cases}x^{2}+4, & x<2, \\ x^{3}, & x \geq 2\end{cases}$
c) $f(x)=\sqrt{1-x}$
d) $f(x)= \begin{cases}\frac{1}{x-2}, & x \neq 2 \\ 0, & x=2\end{cases}$
3) Determine the points in which the following functions are not continuous:
a) $f(x)=\frac{1}{1+2^{\frac{1}{x}}}$
b) $f(x)=\frac{1}{|x|+1}-\frac{x^{2}}{2}$
4) Find all the values of a such that the following function will be continuous for all x.

$$
f(x)= \begin{cases}x+1, & x \leq 1 \\ 3-a x^{2}, & x>1\end{cases}
$$

5) Find A and B such that the following function will be continuous for all x.

$$
f(x)= \begin{cases}\frac{x^{2}-4}{x-2}, & x<2 \\ A x+B, & 2 \leq x \leq 3 \\ \frac{x-3}{x^{2}-9} & x>3\end{cases}
$$

6) Compute the following limits:
a) $\lim _{x \rightarrow \infty} 3^{\frac{x^{2}-1}{2 x^{2}+1}}$
b) $\lim _{x \rightarrow 1} \ln \frac{x^{2}-1}{x-1}$

Consider the following
Theorem: Let $f(x)$ be a continuous function in the closed interval $[a, b]$. Assume that
$f(a) f(b) \leq 0$. Then there exist a point $a \leq c \leq b$ such that $f(c)=0$.

Use this Theorem to solve exercises 7)-9).
7) Prove that the equation $x^{4}-2 x-3=0$ has a root in the interval [0,2].
8) Let n be an odd number. Prove that the polynomial $f(x)=x^{n}-3 x+1$ has at least one real root.
9) Let $f(x)$ be a continuous function in the interval $[a, b]$. Given a number d between $f(a)$ and $f(b)$ prove that there is a number c such that $a \leq c \leq b$ such that $f(c)=d$. Hint: Consider the function $g(x)=f(x)-d$.
10) Give an example of a function $f(x)$ defined in the interval $[a, b]$, satisfies $f(a)<0$ and $f(b)>0$, and such that $f(x) \neq 0$ for all $x \in[a, b]$.
11) Let $f(x)$ be a function which is defined in the interval $[a, b]$. Assume that $f(x)$ is continuous and one to one in this interval. Prove that $f(x)$ obtain its maximal and minimal values in $[a, b]$ at the end points of the interval.
12) Let $f(x)$ be a function which satisfies $f(x+y)=f(x)+f(y)$ for all x and y. Assume that $f(x)$ is continuous at $x=0$. Prove that it is continuous for all x.

